Written by

Bernard Marr

Bernard Marr is a world-renowned futurist, influencer and thought leader in the fields of business and technology, with a passion for using technology for the good of humanity. He is a best-selling author of 20 books, writes a regular column for Forbes and advises and coaches many of the world’s best-known organisations. He has over 2 million social media followers, 1 million newsletter subscribers and was ranked by LinkedIn as one of the top 5 business influencers in the world and the No 1 influencer in the UK.

Bernard’s latest book is ‘Business Trends in Practice: The 25+ Trends That Are Redefining Organisations’

View Latest Book

Follow Me

Bernard Marr ist ein weltbekannter Futurist, Influencer und Vordenker in den Bereichen Wirtschaft und Technologie mit einer Leidenschaft für den Einsatz von Technologie zum Wohle der Menschheit. Er ist Bestsellerautor von 20 Büchern, schreibt eine regelmäßige Kolumne für Forbes und berät und coacht viele der weltweit bekanntesten Organisationen. Er hat über 2 Millionen Social-Media-Follower, 1 Million Newsletter-Abonnenten und wurde von LinkedIn als einer der Top-5-Business-Influencer der Welt und von Xing als Top Mind 2021 ausgezeichnet.

Bernards neueste Bücher sind ‘Künstliche Intelligenz im Unternehmen: Innovative Anwendungen in 50 Erfolgreichen Unternehmen’

View Latest Book

Follow Me

4 Simple Ways Businesses Can Use Natural Language Processing

2 July 2021

Natural language processing (or NLP for short) refers to technology that allows computers to understand human language. NLP is what helps computers read, edit and summarise text – as well as enabling natural language generation (NLG), whereby computers generate their own “speech.” In other words, NLP is the technology that enables Siri to understand your requests, while NLG means Siri can respond in natural-sounding language.

Examples of NLP in action

Smart digital assistants like Alexa and Siri are among the best-known examples of NLP in action. Predictive text and email spam filters are earlier examples.

One of my favorite examples is the popular grammar tool Grammarly, which provides a spelling and grammar cheque for your Word documents, email, and social media posts. (You can download a Grammarly plug-in for Microsoft Office, get an extension for Chrome, and download a Grammarly keyboard for your mobile devices.) The AI-based system was trained using examples of correct and incorrect grammar, punctuation, and spelling, but it’s constantly evolving and learning. For example, when a user ignores a Grammarly suggestion, the system learns from that in order to deliver more relevant suggestions in the future.

Why NLP is such a key trend

NLP is a critical technology trend because so much of the world’s information is in the form of natural human language. Think of all the information out there in the form of emails, WhatsApp messages, Twitter updates, news articles, books, spoken conversations, and so on. NLP allows machines to unlock all this information and extract meaning from it.

Traditionally, extracting meaning from language was incredibly difficult for machines. Human language is messy, complicated, and unstructured, and a far cry from the highly structured data that machines are used to dealing with. AI has changed all that. Thanks to AI technologies such as machine learning, coupled with the rise of big data, computers are learning to process and extract meaning from text – and with impressive results.

4 ways businesses can make use of NLP technology

Let’s look at some of the main ways in which companies are adopting NLP technology and using it to improve business processes.

1. Speech recognition

We know from virtual assistants like Alexa that machines are getting better at decoding the human voice all the time. As a result, the way humans communicate with machines and query information is beginning to change – and this could have a dramatic impact on the future of data analysis. In a business context, decision-makers use a variety of data to inform their decisions. Traditionally, accessing this data meant using a dashboard or other analytics interface and sifting through the various metrics and reports available. But now, thanks to NLP, some data analytics tools have the ability to understand natural language queries. In other words, instead of sifting through the information to extract insights, users can simply speak or type their questions (such as, “Who are our best performers this week?”) and get a meaningful response. As an example of this, Sisense analytics engines integrate with Alexa.

2. Sentiment analysis

As well as understanding what people are saying, machines can now understand the emotional context behind those words. Known as sentiment analysis, this can be used to measure customer opinions, monitor a company’s reputation, and generally understand whether customers are happy with a product or service. Sentiment analysis is now well established, and there are many different tools out there that will mine what people are saying about your brand on social media in order to gauge their opinion. The technology can be extraordinarily perceptive. In one example, researchers at the Microsoft Research Labs in Washington were able to predict which women were at risk of postnatal depression just by analyzing their Twitter posts. What’s even more impressive is the research was based on what women were saying in the weeks before giving birth.

3. Automatic summarization

I’ve already alluded to how much information is wrapped up in human language, whether written or spoken. For some sectors – I’m thinking of the legal system as a prime example – the ability to easily extract key information from thousands of pages of documents could be a real game-changer. Tools such as MeaningCloud and ML Analyser can automatically summarise long documents into short, fluent, and accurate summaries. They can also be used to extract keywords.

4. Chatbots

Closely linked with speech recognition, chatbots are another useful business tool powered by NLP. Chatbots are everywhere these days – on the websites you browse, in messenger platforms, and in apps – and the technology is helping to streamline a range of business processes, including customer service, sales, and even HR. If you’voe interacted with a brand via messaging lately, chances are you were chatting with a bot. And although the technology is far from perfect, it’s definitely getting harder to tell whether we’re talking to a human or a computer.

Business Trends In Practice | Bernard Marr
Business Trends In Practice | Bernard Marr

Related Articles

The 7 Most Successful Business Models Of The Digital Era

The first two decades of this century are characterized by digital entrepreneurs upending traditional business models in search of new ways of creating revenue and serving customers.[...]

How To Drive Corporate Innovation And Outpace Startups

Startups are often considered the natural wellspring of industrial innovation.[...]

What Tech Trends Should Companies Focus on in 2023? Here Are Three to Consider (And One to Ignore)

It’s common to hear it said that today, in order to thrive, every business needs to become a tech business.[...]

Bringing Real-Time AI To The Core Of Your Business

Artificial intelligence (AI) is big news right now thanks to a wave of viral applications such as ChatGPT and Dall-E, which have captured the public’s imagination.[...]

The Future Of Work: Are Traditional Degrees Still Worthwhile?

Jobs and the world of work are changing. This raises one very important question: As many roles become increasingly focused on specialized skills and on-the-job experience, are traditional degrees still valuable to employers?[...]

The Real Reasons For Big Tech Layoffs At Google, Microsoft, Meta, and Amazon

Between them, some of the world’s biggest tech companies have collectively laid off more than 150,000 workers in recent months.[...]

Stay up-to-date

  • Get updates straight to your inbox
  • Join my 1 million newsletter subscribers
  • Never miss any new content

Social Media

Yearly Views


View Podcasts