Written by

Bernard Marr

Bernard Marr is a world-renowned futurist, influencer and thought leader in the fields of business and technology, with a passion for using technology for the good of humanity. He is a best-selling author of 20 books, writes a regular column for Forbes and advises and coaches many of the world’s best-known organisations. He has over 2 million social media followers, 1 million newsletter subscribers and was ranked by LinkedIn as one of the top 5 business influencers in the world and the No 1 influencer in the UK.

Bernard’s latest book is ‘Business Trends in Practice: The 25+ Trends That Are Redefining Organisations’

View Latest Book

Follow Me

Bernard Marr ist ein weltbekannter Futurist, Influencer und Vordenker in den Bereichen Wirtschaft und Technologie mit einer Leidenschaft für den Einsatz von Technologie zum Wohle der Menschheit. Er ist Bestsellerautor von 20 Büchern, schreibt eine regelmäßige Kolumne für Forbes und berät und coacht viele der weltweit bekanntesten Organisationen. Er hat über 2 Millionen Social-Media-Follower, 1 Million Newsletter-Abonnenten und wurde von LinkedIn als einer der Top-5-Business-Influencer der Welt und von Xing als Top Mind 2021 ausgezeichnet.

Bernards neueste Bücher sind ‘Künstliche Intelligenz im Unternehmen: Innovative Anwendungen in 50 Erfolgreichen Unternehmen’

View Latest Book

Follow Me

Knowledge Graphs And Machine Learning — The Future Of AI Analytics?

2 July 2021

The unprecedented explosion in the amount of information we are generating and collecting, thanks to the arrival of the internet and the always-online society, powers all the incredible advances we see today in the field of artificial intelligence (AI) and Big Data.

With this in mind, a great deal of thought and research has gone into working out the best way to store and organise information during the digital age. The relational database model was developed in the 1970s and organises data into tables consisting of rows and columns – meaning the relationship between different data points can be determined at a glance.

This worked very well in the early days of business computing, where information volumes grew slowly. For more complicated operations, however – such as establishing a relationship between data points stored in many different tables – the necessary operations quickly become complex, slow and cumbersome.

Machine learning – the self-teaching algorithms designed to become more accurate at generating predictions from data as they are fed increasingly large volumes of information – often need to draw data from vast and disparate datasets. It quickly became apparent that a new approach was necessary.

The Knowledge Graph

There have been many attempts to improve on the functionality of the relational database since the model was first developed. One which is quickly growing in popularity due to its flexibility and potential for dealing with complex, interrelated data, is the knowledge graph (sometimes known as a graph database.)

The meaning of the term is not precisely set-in-stone – for example, Google has a specific feature which it calls the Knowledge Graph, which powers the section of its search results page that displays factual information, drawn from recognised sources of authority.

While this is built with several of the same ideas that feed into the broader concept of the knowledge graph, it’s not the be-all and end-all of the technology.

In basic terms, a knowledge graph is a database which stores information in a graphical format – and, importantly, can be used to generate a graphical representation of the relationships between any of its data points.

This means that the apparent advantage over the older, relational style database is that the relationships between any data points can be calculated far more quickly and with less compute power overheads, regardless of whether the data points fit neatly together into a table.

Oracle – which actually released the first commercially available relational database management system in 1978 – is now leading the field in making knowledge graph systems available to the wider business community. Currently, you’re more likely to find them being used by tech giants and research institutions, but this is set to change in the very near future.

Hassan Chafi, senior director of research and advanced development at Oracle Labs, describes the difference between relational and graph databases to me in this way: “With a relational database … it just deals with tables … it allows you to find a row in a table, or take two tables and combine them … and with every join, you’re traversing one hop in these graphs, but you’re reasoning about it in these tabular ways.

“So now what we’re saying is, what if you were to rearrange that same information as a graph? Now it’s visual, and instead of having these tables representing connexions, you have vertices which represent people, or accounts, and you have ‘edges’ which represent relationships. Now I can more quickly say, ‘ok, are Bob and Charlie related? And I can see easily that they are.”

Who uses knowledge graphs?

At the moment, knowledge graphs are widely used by the tech giants that have made gathering and analysing huge volumes of messy, complex data their core business. They power Google’s search engine, as the original page rank algorithm is based on a form of knowledge graph, as well as later additions to its search technology such as the Knowledge Graph.

Facebook also relies on this form of information organisation, to keep track of networks of people and the connexions between them, as well as every other data point they use to build a picture of their users, such as favourite artists and movies, events attended and geographical locations. One of its most significant breakthroughs is considered to be the realisation that the relationships between data points are as valuable as the data points themselves when it comes to building social networks.

Netflix uses knowledge graph technology to organise information on its vast catalogue of content, drawing connexions between movies and TV shows and the actors, directors or producers who put them together. This helps them to predict what customers might like to watch next, and foster the “binge-watching” model of consumption it has built its business around.

Electronics and manufacturing giant Siemens uses knowledge graphs to build accessible models of all of the data it generates and stores, and use it for risk management, process monitoring and building “digital twins” – simulated versions of real-world systems which can be used for design, prototyping and training.

In supply chain logistics, knowledge graphs can be used to keep track of inventories of different components and parts, allowing manufacturers to understand the crossover between materials that are used in different products.

They are also being quickly adopted by the financial services industry, where they are useful for assessing whether or not transactions are fraudulent, as well as many other functions such as marketing and investment analytics.

Chafi tells me “In particular for crime and compliance … for money laundering, one can think of money moving around as a graph, and you need to think about whether those movements are risky or not … If you were to follow the trail that starts from one place, does it come back to the same place after an indefinite number of hops?”

Machine learning

With industries increasingly adopting machine learning, it seems likely that knowledge graph technology will also evolve hand-in-hand. As well as being a useful format for feeding training data to algorithms, machine learning can quickly build and structure graph databases, drawing connexions between data points that would otherwise go unnoticed.

Machine learning is great for answering questions, and knowledge graphs are a step towards enabling machines to more deeply understand data such as video, audio and text that don’t fit neatly into the rows and columns of a relational database.

This could potentially revolutionise fields where the technology undoubtedly has applications that have not yet been fully explored, including healthcare and law.

As with machine learning itself, what started as an academic exercise before being adopted by the most cutting-edge tech companies will no doubt “trickle down”, as tools and frameworks designed to make it accessible become more widely available. 

Business Trends In Practice | Bernard Marr
Business Trends In Practice | Bernard Marr

Related Articles

3 Ways To Reinvent Your Products And Services For The Future

With the rise of the metaverse and web3 technologies, there’s no denying the next evolution of the internet is already underway.[...]

Virtual Influencer Noonoouri Lands Record Deal: Is She The Future Of Music?

Teenage influencer Noonoouri has 400,000 followers on Instagram and has starred in fashion campaigns for Dior, Balenciaga and Valentino.[...]

Managing Stress at Work: 5 Top Tips Anyone Can Follow

In our contemporary world, the pressures of the professional sphere often encroach upon our personal space, giving rise to stress and an overwhelming sense of dread.[...]

How Can We Use AI to Address Global Challenges Like Climate Change?

As climate change continues to pose an enormous threat to our planet, we must explore innovative solutions that can help mitigate its impact.[...]

Debunking The Top 5 Cybersecurity Myths

At a time when cyberattacks, ransomware attacks and online fraud are all on the rise, it’s important that everyone understands the basics of cybersecurity.[...]

Generative AI: A Game-Changer Every CEO Should Embrace

In the sprawling landscape of artificial intelligence (AI), a new superstar emerges: Generative AI. If you're a CEO, an executive, or a business leader, this is a concept you simply cannot afford to ignore.[...]

Stay up-to-date

  • Get updates straight to your inbox
  • Join my 1 million newsletter subscribers
  • Never miss any new content

Social Media

Yearly Views


View Podcasts