Amazon: Using Big Data to understand customers
23 July 2021
How Amazon uses Big Data in practice
Amazon has thrived by adopting an “everything under one roof” model. However, when faced with such a huge range of options, customers can often feel overwhelmed. They effectively become data-rich, with tons of options, but insight-poor, with little idea about what would be the best purchasing decision for them.

To combat this, Amazon uses Big Data gathered from customers while they browse to build and fine-tune its recommendation engine. The more Amazon knows about you, the better it can predict what you want to buy. And, once the retailer knows what you might want, it can streamline the process of persuading you to buy it – for example, by recommending various products instead of making you search through the whole catalogue.
Amazon’s recommendation technology is based on collaborative filtering, which means it decides what it thinks you want by building up a picture of who you are, then offering you products that people with similar profiles have purchased.
Amazon gathers data on every one of its customers while they use the site. As well as what you buy, the company monitors what you look at, your shipping address (Amazon can take a surprisingly good guess at your income level based on where you live), and whether you leave reviews/feedback.
This mountain of data is used to build up a “360-degree view” of you as an individual customer. Amazon can then find other people who fit into the same precise customer niche (employed males between 18 and 45, living in a rented house with an income of over $30,000 who enjoy foreign films, for example) and make recommendations based on what those other customers like.
The technical details
Amazon collects data from users as they navigate the site, such as the time spent browsing each page. The retailer also makes use of external datasets, such as census data for gathering demographic details.
Amazon’s core business is handled in its central data warehouse, which consists of Hewlett-Packard servers running Oracle on Linux.
Ideas and insights you can steal
Too much choice and too little guidance can overwhelm customers and put them off making purchasing decisions. Recommendation engines simplify the task of predicting what a customer wants, by profiling them and looking what people who fit into similar niches buy. In this way, developing a 360-degree view of your customers as individuals is the foundation of Big Data-driven marketing and customer service.
You can read more about how Amazon is using Big Data to drive success in Big Data in Practice: How 45 Successful Companies Used Big Data Analytics to Deliver Extraordinary Results.
Related Articles
6 Roadblocks Stopping Web3 And The Metaverse Becoming A Reality
With the emergence of the metaverse and web3 technologies, it’s clear that the next evolution of the internet is already underway.[...]
The Future Of Factories: 3 Ways To Navigate The Industrial Metaverse
What is the industrial metaverse, you ask? Well, we’re not talking about a separate metaverse exclusively for manufacturers..[...]
The Five Questions Every CEO Must Answer About Sustainability
The future of business is green. As a CEO, the ball is in your court to make sustainability an integral part of your corporate strategy.[...]
Debunking The Top 5 Quantum Computing Myths
It makes sense that most people don’t understand quantum computing.[...]
Mastering Teamwork: Top 10 Strategies for Better Collaboration at Work
The nature of teams may be changing as more and more people work remotely, but the truth is businesses will always want people on their teams who can work well with others.[...]
Personalization Pitfalls: 5 Common Mistakes To Avoid For Effective Marketing
Targeted mass marketing was developed by direct mail businesses in the 1960s and 1970s to enable customers to be segmented by age, geography, or income.[...]
Stay up-to-date
- Get updates straight to your inbox
- Join my 1 million newsletter subscribers
- Never miss any new content
Social Media