How Do You Know When And Where To Apply Deep Learning?
2 July 2021
There’s no denying that deep learning is a hot topic right now. But what does it really mean, and how should it be applied in practise? In this article, I’ll look at how deep learning is best used … and when it should be avoided.
What is deep learning?
To understand deep learning, you first need to understand artificial intelligence and machine learning:
- Artificial intelligence (AI) is centred around the concept of building machines that can think like humans. Since we’re (for now) some way off machines that can truly act and think like humans, AI can best be described as the ability of machines to interpret the world around them and make decisions.
- Machine learning is a subset of AI, or, rather, it’s the cutting edge of AI. Specifically, machine learning is about teaching computers to learn from data, and make intelligent decisions or take action based on what they’ve learned.
Deep learning represents the next level of machine learning – it’s the cutting edge of the cutting edge, if you like. With machine learning, the computer or machine ‘learns’ from the data it’s given. So a programmer could ‘teach’ a computer to recognise images of cats, by giving it a teaching set of images: some that contain cats (these images would have to be labelled as ‘cats’) and some that don’t contain any cat (labelled ‘not a cat’), and directing the algorithms to the different variables to distinguish cats and dogs. The computer then ‘learns’ from the training set and applies that knowledge to a new set of images, getting better over time as it successfully identifies more images of cats and adds to its teaching set. If the machines return wrong results a programmer would help to adjust the code.
But with deep learning, machines don’t require a human programmer to step in. The computer can determine by itself if its predictions are correct or not. It does this by continuously assessing data via layers of artificial neural networks that mimic the decision-making processes in our human brains. In order to work well, deep learning algorithms require much larger data sets than traditional machine learning applications. So in our cat example, there’s no need to tell the algorithms which variables to use to distinguish between images with cats and those without – you simply give the computer millions of images and let it work out for itself what a cat looks like.
Deep learning in action
Let’s look at two real-world examples of deep learning at work:
- Translation and language recognition: deep learning is making automatic translation much more accurate, and it’s also enabling machines to not just recognise which language is being spoken, but which dialect is being spoken. All without human involvement.
- Autonomous vehicles: as a driverless car makes its way down the road, it’s making decisions based different deep learning models. For example, one model will specialise in interpreting street signs, while another will recognise traffic lights, while another will recognise cyclists, and so on.
When not to use deep learning
Deep learning is certainly impressive and exciting, but it’s not automatically suitable for every situation. In fact, there are certain circumstances where deep learning is probably not the best solution.
For one thing, deep learning really needs Big Data to make accurate decisions. So if you haven’t got an extremely large dataset to learn from, a regular machine learning algorithm is likely to deliver more accurate results.
It’s also more expensive to implement because it takes a lot of computing power to run a deep learning network. While services and tools like IBM’s Watson are helping to lower the barrier to entry for deep learning, remember that deep learning is still at the very cutting edge. For the average (i.e. Non-Google) business on a budget, deep learning could be too expensive to be practical.
Where best to apply deep learning
Deep learning is ideal for predicting outcomes whenever you have a lot of data to learn from – ‘a lot’ being a huge dataset with hundreds of thousands or better millions of data points. Where you have a huge volume of data like this, the system has what it needs to train itself.
It’s also best when applied to complex problems and things that would be vastly expensive to solve with human decision making. Image processing is a great example of this. So, rather than YouTube paying an army of human workers to trawl through millions of videos and tag the ones with cats for our viewing pleasure, it makes much more sense to apply deep learning. It’s the same with translation and speech recognition.
And last but not least, deep learning is only appropriate if you have the high-end computing power to make it work, or are partnering with an analytics provider who has the infrastructure and skills that might be lacking in-house.
If your circumstances match these criteria, then deep learning might be the ideal solution to your business problem. For anything else, less cutting-edge analytics solutions might be a better route to success.
Where to go from here If you would like to know more about Deep Learning, Machine Learning, AI and Big Data, cheque out my articles on:
- What Is Deep Learning AI? A Simple Guide With 8 Practical Examples
- What is the Difference Between Artificial Intelligence and Machine Learning?
- What is Machine Learning – A Complete Beginner’s Guide
- What is AI?
Or browse other related articles.
Related Articles
4 Smartphones Leading The AI Revolution
As enterprises increasingly rely on company-issued smartphones as primary computing devices, these mobile devices are becoming the frontline of workplace AI integration.[...]
The Rise Of AI-Enabled Virtual Pets: Why Millions Are Raising Digital Companions
Remember Tamagotchis? Those tiny digital pets that had millions of kids frantically pressing buttons to keep their virtual companions alive in the 1990s?[...]
The Dark Side Of AI: How Deepfakes And Disinformation Are Becoming A Billion-Dollar Business Risk
Every week, I talk to business leaders who believe they're prepared for AI disruption. But when I ask them about their defense strategy against AI-generated deepfakes and disinformation, I'm usually met with blank stares.[...]
Why You Should Be Polite To ChatGPT And Other AIs
In my latest conversation with ChatGPT, I caught myself saying "please" and "thank you." My wife, overhearing this, couldn't help but laugh at my politeness toward a machine.[...]
The 7 Revolutionary Cloud Computing Trends That Will Define Business Success In 2025
Picture this: A world where quantum computing is as accessible as checking your email, where AI automatically optimizes your entire cloud infrastructure, and where edge computing seamlessly melds with cloud services to deliver lightning-fast responses.[...]
AI And The Global Economy: A Double-Edged Sword That Could Trigger Market Meltdowns
The stock market's current AI euphoria, driven by companies like NVIDIA developing powerful processors for machine learning, might mask a more troubling reality.[...]
Sign up to Stay in Touch!
Bernard Marr is a world-renowned futurist, influencer and thought leader in the fields of business and technology, with a passion for using technology for the good of humanity.
He is a best-selling author of over 20 books, writes a regular column for Forbes and advises and coaches many of the world’s best-known organisations.
He has a combined following of 4 million people across his social media channels and newsletters and was ranked by LinkedIn as one of the top 5 business influencers in the world.
Bernard’s latest book is ‘Generative AI in Practice’.
Social Media