Written by

Bernard Marr

Bernard Marr is a world-renowned futurist, influencer and thought leader in the fields of business and technology, with a passion for using technology for the good of humanity. He is a best-selling author of over 20 books, writes a regular column for Forbes and advises and coaches many of the world’s best-known organisations. He has a combined following of 4 million people across his social media channels and newsletters and was ranked by LinkedIn as one of the top 5 business influencers in the world.

Bernard’s latest books are ‘Future Skills’, ‘The Future Internet’, ‘Business Trends in Practice’ and ‘Generative AI in Practice’.

Generative AI Book Launch
View My Latest Books

Follow Me

Bernard Marr ist ein weltbekannter Futurist, Influencer und Vordenker in den Bereichen Wirtschaft und Technologie mit einer Leidenschaft für den Einsatz von Technologie zum Wohle der Menschheit. Er ist Bestsellerautor von 20 Büchern, schreibt eine regelmäßige Kolumne für Forbes und berät und coacht viele der weltweit bekanntesten Organisationen. Er hat über 2 Millionen Social-Media-Follower, 1 Million Newsletter-Abonnenten und wurde von LinkedIn als einer der Top-5-Business-Influencer der Welt und von Xing als Top Mind 2021 ausgezeichnet.

Bernards neueste Bücher sind ‘Künstliche Intelligenz im Unternehmen: Innovative Anwendungen in 50 Erfolgreichen Unternehmen’

View Latest Book

Follow Me

What Are Artificial Neural Networks – A Simple Explanation For Absolutely Anyone

2 July 2021

There are many things computers can do better than humans—calculate square roots or retrieve a web page instantaneously—but our incredible brains are still a step ahead when it comes to common sense, inspiration and imagination. Inspired by the structure of the brain, artificial neural networks (ANN) are the answer to making computers more human like and help machines reason more like humans.

What are artificial neural networks (ANN)?

Human brains interpret the context of real-world situations in a way that computers can’t. Neural networks were first developed in the 1950s to address this issue. An artificial neural network is an attempt to simulate the network of neurons that make up a human brain so that the computer will be able to learn things and make decisions in a humanlike manner. ANNs are created by programming regular computers to behave as though they are interconnected brain cells.

How do artificial neural networks work?

Artificial neural networks use different layers of mathematical processing to make sense of the information it’s fed. Typically, an artificial neural network has anywhere from dozens to millions of artificial neurons—called units—arranged in a series of layers. The input layer receives various forms of information from the outside world. This is the data that the network aims to process or learn about. From the input unit, the data goes through one or more hidden units. The hidden unit’s job is to transform the input into something the output unit can use.

The majority of neural networks are fully connected from one layer to another. These connexions are weighted; the higher the number the greater influence one unit has on another, similar to a human brain. As the data goes through each unit the network is learning more about the data. On the other side of the network is the output units, and this is where the network responds to the data that it was given and processed.

Cognitive neuroscientists have learned a tremendous amount about the human brain since computer scientists first attempted the original artificial neural network. One of the things they learned is that different parts of the brain are responsible for processing different aspects of information and these parts are arranged hierarchically. So, input comes into the brain and each level of neurons provide insight and then the information gets passed on to the next, more senior level. That’s precisely the mechanism that ANNs are trying to replicate.       

In order for ANNs to learn, they need to have a tremendous amount of information thrown at them called a training set. When you are trying to teach an ANN how to differentiate a cat from dog, the training set would provide thousands of images tagged as a dog so the network would begin to learn. Once it has been trained with the significant amount of data, it will try to classify future data based on what it thinks it’s seeing (or hearing, depending on the data set) throughout the different units. During the training period, the machine’s output is compared to the human- provided description of what should be observed. If they are the same, the machine is validated. If it’s incorrect, it uses back propagation to adjust its learning—going back through the layers to tweak the mathematical equation. Known as deep learning, this is what makes a network intelligent.

What are artificial neural networks used for?

There are several ways artificial neural networks can be deployed including to classify information, predict outcomes and cluster data. As the networks process and learn from data they can classify a given data set into a predefined class, it can be trained to predict outputs that are expected from a given input and can identify a special feature of data to then classify the data by that special feature. Google uses a 30-layered neural network to power Google Photos as well as to power its “watch next” recommendations for YouTube videos. Facebook uses artificial neural networks for its DeepFace algorithm, which can recognise specific faces with 97% accuracy. It’s also an ANN that powers Skype’s ability to do translations in real-time.

Computers have the ability to understand the world around them in a very human-like manner thanks to the power of artificial neural networks.

Business Trends In Practice | Bernard Marr
Business Trends In Practice | Bernard Marr

Related Articles

7 Ways Marketers Should Be Using Generative AI Now

Marketing is all about engaging customers with compelling content – delivering thoughtful, inspiring messages that help to create a deeper relationship with the brand.[...]

The AI Revolution In Wine Fraud Detection

In an era where authenticity is as valuable as the vintage itself, the wine industry faces a pressing challenge: wine fraud.[...]

10 Mind-Blowing Generative AI Stats Everyone Should Know About

A little over a year ago, no one was talking about generative AI. Now, it’s the dominant topic of top-level events like CES and the World Economic Forum.[...]

How Generative AI Is Revolutionizing Customer Service

Customer service is proving to be one of the most popular applications of generative AI. But how exactly can generative AI aid customer service teams (without alienating customers)?[...]

Will Generative AI Help Us Solve The Climate Crisis (Or Will It Make It Worse)?

You might be surprised to learn that AI is already proving to be a powerful weapon in the fight against climate change.[...]

13 Ways Writers Should Embrace Generative AI

Generative AI is already being adopted in journalism to automate the creation of content, brainstorm ideas for features, create personalized news stories, and produce accompanying video content.[...]

Sign up to Stay in Touch!

Bernard Marr is a world-renowned futurist, influencer and thought leader in the fields of business and technology, with a passion for using technology for the good of humanity.

He is a best-selling author of over 20 books, writes a regular column for Forbes and advises and coaches many of the world’s best-known organisations.

He has a combined following of 4 million people across his social media channels and newsletters and was ranked by LinkedIn as one of the top 5 business influencers in the world.

Bernard’s latest book is ‘Generative AI in Practice’.

Sign Up Today

Social Media

0
Followers
0
Followers
0
Followers
0
Subscribers
0
Followers
0
Subscribers
0
Yearly Views
0
Readers

Podcasts

View Podcasts