Written by

Bernard Marr

Bernard Marr is a world-renowned futurist, influencer and thought leader in the fields of business and technology, with a passion for using technology for the good of humanity. He is a best-selling author of 20 books, writes a regular column for Forbes and advises and coaches many of the world’s best-known organisations. He has over 2 million social media followers, 1 million newsletter subscribers and was ranked by LinkedIn as one of the top 5 business influencers in the world and the No 1 influencer in the UK.

Bernard’s latest book is ‘Business Trends in Practice: The 25+ Trends That Are Redefining Organisations’

View Latest Book

Follow Me

Bernard Marr ist ein weltbekannter Futurist, Influencer und Vordenker in den Bereichen Wirtschaft und Technologie mit einer Leidenschaft für den Einsatz von Technologie zum Wohle der Menschheit. Er ist Bestsellerautor von 20 Büchern, schreibt eine regelmäßige Kolumne für Forbes und berät und coacht viele der weltweit bekanntesten Organisationen. Er hat über 2 Millionen Social-Media-Follower, 1 Million Newsletter-Abonnenten und wurde von LinkedIn als einer der Top-5-Business-Influencer der Welt und von Xing als Top Mind 2021 ausgezeichnet.

Bernards neueste Bücher sind ‘Künstliche Intelligenz im Unternehmen: Innovative Anwendungen in 50 Erfolgreichen Unternehmen’

View Latest Book

Follow Me

Artificial Intelligence In Automotive Industry: Surprisingly Slow Uptake And Missed Opportunities

2 July 2021

The automotive industry is one of the most high-tech industries in the world – so a headline finding in a report published this week was, on the face of it, somewhat surprising

Capgemini’s report – Accelerating Automotive’s AI Transformation – found that during 2018, the number of companies in the industry deploying AI “at scale” grew only marginally by 3%.

This reflected that just 10% of respondents surveyed said that their organisations were deploying AI-driven initiatives across the entirety of its operations “with full scope and scale, ” during 2018, compared to 7% in 2017. 

The relatively slow pace of growth is evidence that “the industry has not made significant progress in AI-driven transformation since 2017”, the report concludes – a surprising finding given the scale of investment and enthusiasm shown by industry leaders.

I spoke to one of the report’s authors, Capgemini’s Ingo Finck, who told me “To an extent, I did find this surprising, because from the discussions we’ve been having with these companies we see that the vast majority – more than 80% – mention AI in their core strategy. 

“It’s clearly a strategic factor for them, so yes … we were surprised by the relatively slow growth rate.”

Before we start delving into the possible reasons for this slow uptake, it’s worth noting that there is a key geographic variation: In China, the number of automotive companies working at scale with AI almost doubled, from 5% to 9%.

This is explained to some extent by the comparatively “open” approach taken by China’s AI giants, such as Baidu’s development of the open source Apollo platform. This has involved it partnering with over 130 other businesses and organisations.

Finck explains that the slow growth demonstrated in other regions could be down to the fact that organisations are taking a more mature approach to AI deployment. This might mean they are moving away from “try everything and see what works” methodologies, towards focusing on proven use cases that can then be scaled.

Another disparity is apparent when we consider the sizes of the businesses that are reporting growth in AI deployments.

“We can see that the smaller companies are struggling more with AI – whereas with larger companies [with revenue of $10 billion plus] the adoption rate is higher.

“The way we interpret this is that the complexities in small companies are almost the same as they are in large companies – many of the difficulties in applying AI are the same across small and large organisations.”

In fact, there’s a clear correlation, as would be expected, between the amount of money invested and the scale of an organisation’s AI deployments. This is clearly a limiting factor for smaller players in the industry.

Of those that have successfully deployed at scale, 80% have done so by spending more than $200 million on AI. Of those that judge themselves not to have successfully deployed at scale, just 20% have spent that amount.

While self-driving, autonomous cars are often talked about as the “headline” use case for AI in automotive, today’s reality is that cognitive learning algorithms are mainly being used to increase efficiency and add value to processes revolving around traditional, manually-driven vehicles.

Significant AI deployments highlighted by the report, mostly at larger OEM organisations, include:

Prototyping – General Motors uses machine learning in their product design operations.

Modelling and simulation – as used by Continental to gather 5,000 miles of virtual vehicle test data per hour.

Sales and marketing – Volkswagen uses machine learning to predict sales of 250 car models across 120 countries, using economic, political and meteorological data.

Quality control – Audi uses computer vision-equipped cameras to detect tiny cracks in sheet metal used in its manufacturing processes, which would not be visible to human eyes.

These companies fall into a category that Capgemini defines as “scale champions” – they have successfully deployed AI at scale, and all tend to display a number of characteristics – a focus on high benefit use cases, good AI governance, significant levels of investment and, importantly, show a willingness to “upskill” employees.

“We’ve learned that AI is most effective when it comes as a human/machine combination, ” Finck tells me.

“In the same way that you improve your AI capabilities, you also have to upskill and educate your staff. That’s more than just training or hiring a few more data scientists. It’s about educating the rest of the organisation – the casual user of AI.”

All of these challenges go some way to explaining the slower than may have been expected adoption of AI across the industry. One thing Finck is certain of, and which is borne out by the report’s broader findings, is that AI has a key role to play in the industry’s future.

He says “I think companies understand that it’s far more than just a ‘plug-in’ technology – it’s a core technology that they have to adopt – like the engine, or information technology. The challenge is embracing this technology across not just the product, but also the service, and the organisation.”

Capgemini’s full report, Accelerating Automotive’s AI Transformation, can be read here.

Business Trends In Practice | Bernard Marr
Business Trends In Practice | Bernard Marr

Related Articles

The Top 10 Tech Trends In 2023 Everyone Must Be Ready For

As a futurist, it’s my job to look ahead — so every year, I cover the emerging tech trends that will be shaping our digital world in the next 12 months.[...]

The Top Five Cybersecurity Trends In 2023

Here, we look at the most important trends to watch out for in 2023, including the increased threats from connected IoT devices, hybrid working, and state-sponsored attacks.[...]

The Disruptive Economic Impact Of Artificial Intelligence

I firmly believe that artificial intelligence (AI) has the potential to be among the most disruptive technologies we will ever develop.[...]

Artificial Intelligence | Bernard Marr

The 5 Biggest Artificial Intelligence (AI) Trends In 2023

Over the last decade, Artificial intelligence (AI) has become embedded in every aspect of our society and lives.[...]

The Problem With Biased AIs (and How To Make AI Better)

AI has the potential to deliver enormous business value for organizations, and its adoption has been sped up by the data-related challenges of the pandemic.[...]

Is AI Really A Job Killer? These Experts Say No

If you believe all the doom and gloom in the news today, you might think automation and the deployment of AI-enabled systems at work will replace scores of jobs worldwide.[...]

Stay up-to-date

  • Get updates straight to your inbox
  • Join my 1 million newsletter subscribers
  • Never miss any new content

Social Media

0
Followers
0
Followers
0
Followers
0
Subscribers
0
Followers
0
Subscribers
0
Yearly Views
0
Readers

Podcasts

View Podcasts