Artificial Intelligence In Automotive Industry: Surprisingly Slow Uptake And Missed Opportunities
2 July 2021
The automotive industry is one of the most high-tech industries in the world – so a headline finding in a report published this week was, on the face of it, somewhat surprising
Capgemini’s report – Accelerating Automotive’s AI Transformation – found that during 2018, the number of companies in the industry deploying AI “at scale” grew only marginally by 3%.
This reflected that just 10% of respondents surveyed said that their organisations were deploying AI-driven initiatives across the entirety of its operations “with full scope and scale, ” during 2018, compared to 7% in 2017.
The relatively slow pace of growth is evidence that “the industry has not made significant progress in AI-driven transformation since 2017”, the report concludes – a surprising finding given the scale of investment and enthusiasm shown by industry leaders.
I spoke to one of the report’s authors, Capgemini’s Ingo Finck, who told me “To an extent, I did find this surprising, because from the discussions we’ve been having with these companies we see that the vast majority – more than 80% – mention AI in their core strategy.
“It’s clearly a strategic factor for them, so yes … we were surprised by the relatively slow growth rate.”
Before we start delving into the possible reasons for this slow uptake, it’s worth noting that there is a key geographic variation: In China, the number of automotive companies working at scale with AI almost doubled, from 5% to 9%.
This is explained to some extent by the comparatively “open” approach taken by China’s AI giants, such as Baidu’s development of the open source Apollo platform. This has involved it partnering with over 130 other businesses and organisations.
Finck explains that the slow growth demonstrated in other regions could be down to the fact that organisations are taking a more mature approach to AI deployment. This might mean they are moving away from “try everything and see what works” methodologies, towards focusing on proven use cases that can then be scaled.
Another disparity is apparent when we consider the sizes of the businesses that are reporting growth in AI deployments.
“We can see that the smaller companies are struggling more with AI – whereas with larger companies [with revenue of $10 billion plus] the adoption rate is higher.
“The way we interpret this is that the complexities in small companies are almost the same as they are in large companies – many of the difficulties in applying AI are the same across small and large organisations.”
In fact, there’s a clear correlation, as would be expected, between the amount of money invested and the scale of an organisation’s AI deployments. This is clearly a limiting factor for smaller players in the industry.
Of those that have successfully deployed at scale, 80% have done so by spending more than $200 million on AI. Of those that judge themselves not to have successfully deployed at scale, just 20% have spent that amount.
While self-driving, autonomous cars are often talked about as the “headline” use case for AI in automotive, today’s reality is that cognitive learning algorithms are mainly being used to increase efficiency and add value to processes revolving around traditional, manually-driven vehicles.
Significant AI deployments highlighted by the report, mostly at larger OEM organisations, include:
Prototyping – General Motors uses machine learning in their product design operations.
Modelling and simulation – as used by Continental to gather 5,000 miles of virtual vehicle test data per hour.
Sales and marketing – Volkswagen uses machine learning to predict sales of 250 car models across 120 countries, using economic, political and meteorological data.
Quality control – Audi uses computer vision-equipped cameras to detect tiny cracks in sheet metal used in its manufacturing processes, which would not be visible to human eyes.
These companies fall into a category that Capgemini defines as “scale champions” – they have successfully deployed AI at scale, and all tend to display a number of characteristics – a focus on high benefit use cases, good AI governance, significant levels of investment and, importantly, show a willingness to “upskill” employees.
“We’ve learned that AI is most effective when it comes as a human/machine combination, ” Finck tells me.
“In the same way that you improve your AI capabilities, you also have to upskill and educate your staff. That’s more than just training or hiring a few more data scientists. It’s about educating the rest of the organisation – the casual user of AI.”
All of these challenges go some way to explaining the slower than may have been expected adoption of AI across the industry. One thing Finck is certain of, and which is borne out by the report’s broader findings, is that AI has a key role to play in the industry’s future.
He says “I think companies understand that it’s far more than just a ‘plug-in’ technology – it’s a core technology that they have to adopt – like the engine, or information technology. The challenge is embracing this technology across not just the product, but also the service, and the organisation.”
Capgemini’s full report, Accelerating Automotive’s AI Transformation, can be read here.
Related Articles
4 Smartphones Leading The AI Revolution
As enterprises increasingly rely on company-issued smartphones as primary computing devices, these mobile devices are becoming the frontline of workplace AI integration.[...]
The Rise Of AI-Enabled Virtual Pets: Why Millions Are Raising Digital Companions
Remember Tamagotchis? Those tiny digital pets that had millions of kids frantically pressing buttons to keep their virtual companions alive in the 1990s?[...]
Why You Should Be Polite To ChatGPT And Other AIs
In my latest conversation with ChatGPT, I caught myself saying "please" and "thank you." My wife, overhearing this, couldn't help but laugh at my politeness toward a machine.[...]
The 7 Revolutionary Cloud Computing Trends That Will Define Business Success In 2025
Picture this: A world where quantum computing is as accessible as checking your email, where AI automatically optimizes your entire cloud infrastructure, and where edge computing seamlessly melds with cloud services to deliver lightning-fast responses.[...]
AI And The Global Economy: A Double-Edged Sword That Could Trigger Market Meltdowns
The stock market's current AI euphoria, driven by companies like NVIDIA developing powerful processors for machine learning, might mask a more troubling reality.[...]
Sign up to Stay in Touch!
Bernard Marr is a world-renowned futurist, influencer and thought leader in the fields of business and technology, with a passion for using technology for the good of humanity.
He is a best-selling author of over 20 books, writes a regular column for Forbes and advises and coaches many of the world’s best-known organisations.
He has a combined following of 4 million people across his social media channels and newsletters and was ranked by LinkedIn as one of the top 5 business influencers in the world.
Bernard’s latest book is ‘Generative AI in Practice’.
Social Media