Written by

Bernard Marr

Bernard Marr is a world-renowned futurist, influencer and thought leader in the fields of business and technology, with a passion for using technology for the good of humanity. He is a best-selling author of 20 books, writes a regular column for Forbes and advises and coaches many of the world’s best-known organisations. He has over 2 million social media followers, 1 million newsletter subscribers and was ranked by LinkedIn as one of the top 5 business influencers in the world and the No 1 influencer in the UK.

Bernard’s latest book is ‘Business Trends in Practice: The 25+ Trends That Are Redefining Organisations’

View Latest Book

Follow Me

Bernard Marr ist ein weltbekannter Futurist, Influencer und Vordenker in den Bereichen Wirtschaft und Technologie mit einer Leidenschaft für den Einsatz von Technologie zum Wohle der Menschheit. Er ist Bestsellerautor von 20 Büchern, schreibt eine regelmäßige Kolumne für Forbes und berät und coacht viele der weltweit bekanntesten Organisationen. Er hat über 2 Millionen Social-Media-Follower, 1 Million Newsletter-Abonnenten und wurde von LinkedIn als einer der Top-5-Business-Influencer der Welt und von Xing als Top Mind 2021 ausgezeichnet.

Bernards neueste Bücher sind ‘Künstliche Intelligenz im Unternehmen: Innovative Anwendungen in 50 Erfolgreichen Unternehmen’

View Latest Book

Follow Me

Green Intelligence: Why Data And AI Must Become More Sustainable

7 April 2023

As big data, machine learning, and artificial intelligence continue to gain prominence in information technology, experts are raising concerns about the environmental costs of computation — primarily data and AI’s carbon footprint and greenhouse gas emissions.

Green Intelligence: Why Data And AI Must Become More Sustainable | Bernard Marr

The problem is showing no signs of slowing down. As a result of the COVID-19 pandemic, data and AI deployment increased exponentially as the demand for digital transformation increased.

MIT reported that the cloud now has a larger carbon footprint than the entire airline industry, and a single data center might consume an amount of electricity equivalent to 50,000 homes.

Meanwhile, the datasets used to train AI are increasingly large and take an enormous amount of energy to run. The MIT Technology Review reported that training just one AI model can emit more than 626,00 pounds of carbon dioxide equivalent – which is nearly five times the lifetime emissions of an average American car.

Let's take a look at why it's important for enterprises to address how data storage and AI are contributing to greenhouse gas emissions and what we can do to mitigate the impacts of this ongoing problem.

Why We Must Address This Problem

Sanjay Podder, managing director and global lead of technology sustainability innovation at Accenture, says that the exponential growth in data and its increased energy demand could actually counteract and impede our global progress on climate change.

Right now, the AI community has adopted a “bigger is better” attitude regarding data and artificial intelligence – but that approach threatens to inflict major environmental damage in the future.

Tech experts will need to expend greater and greater amounts of energy to build increasingly larger models, with decreasing improvements in performance.

For example, the AI that underlies autonomous vehicles must be trained to learn to drive. Once the initial training is complete, the AI model in the autonomous vehicle performs continuous inference so it can navigate its environment. This process happens day after day as long as we are using the vehicle. That's a lot of energy requirements just for one car.

We need bold, thoughtful initiatives to set the field of AI on a more sustainable trajectory.

Suggestions for Tackling AI’s Sustainability Impact

What can enterprise companies do to mitigate the environmental impacts of AI and big data while still driving forward with innovation? Here are a few data sustainability suggestions:

Consider how environmental impact is measured. We need to improve carbon accounting by delivering faster, more accurate data on carbon footprints and sustainability impacts. Tools like Salesforce’s Net Zero Cloud, SustainLife, and Microsoft Cloud for Sustainability can help companies visualize and understand their missteps so they can spot opportunities for improvement.

Estimate carbon footprints of AI models. The Machine Learning Emissions Calculator can help practitioners run estimations based on factors like cloud provider, geographic region, and hardware.

Examine how and where data is stored. Some of the biggest machine learning jobs might be moved to more carbon-friendly regions of the world. For example, Montreal, Canada has a number of data centers that run on hydroelectricity.

Increase transparency and measurement. As AI researchers publish their results for new models, they should include measurements of how much energy was emitted in their model, right alongside their performance and accuracy metrics.

Follow Google’s “4M” best practices. Google has identified four best practices, known as the "4Ms," that can significantly reduce energy and carbon emissions for anyone using Google Cloud services. These include selecting efficient machine learning model architectures, using processors and systems optimized for ML training, computing in the cloud rather than on-premise, and map optimization to choose locations with the cleanest energy. By following these practices, Google claims, energy can be reduced by 100x and emissions by 1000x.

How to Work Toward New AI Paradigms

As we continue to see the accelerated adoption of AI and machine learning technologies into our society, we must consider what these tools and systems are doing to our environment. Unless we are willing to reform today’s AI research agenda and increase transparency around this issue, the world of AI could hold us back in the fight to slow down climate change.

Business Trends In Practice | Bernard Marr
Business Trends In Practice | Bernard Marr

Related Articles

15 Habits To Achieve A Better Work-Life Balance In Today’s Fast-Paced World

Our world is unpredictable and changing fast. Technology brings new challenges and, very often, pressure to be constantly connected.[...]

The Future Of Business: 8 Trends For Startups To Watch

Change and transformation in business continue at a furious rate, and new trends pose opportunities and challenges for organizations of all sizes.[...]

The Power of Mindset: How Curiosity And Humility Can Drive Career Success

I’ve recently finished writing a book on essential future skills, and if I had to pick one skill that underpinned all the other skills in the book it’d be curiosity.[...]

How To Upgrade From Data-Driven To AI-Driven Marketing Analytics

We’re told that data is the key to business success. But how do we go about turning data into money?[...]

The 5 Biggest Problems With Blockchain Technology Everyone Must Know About

Blockchain technology has undeniably captured the imagination of the tech world and beyond, offering the promise of decentralized, transparent, and tamper-proof systems.[...]

How to Make AI Work in Your Organization

As the world continues to embrace the transformative power of artificial intelligence, businesses of all sizes must find ways to effectively integrate this technology into their daily operations.[...]

Stay up-to-date

  • Get updates straight to your inbox
  • Join my 1 million newsletter subscribers
  • Never miss any new content

Social Media

Yearly Views


View Podcasts