Written by

Bernard Marr

Bernard Marr is a world-renowned futurist, influencer and thought leader in the fields of business and technology, with a passion for using technology for the good of humanity. He is a best-selling author of 20 books, writes a regular column for Forbes and advises and coaches many of the world’s best-known organisations. He has over 2 million social media followers, 1 million newsletter subscribers and was ranked by LinkedIn as one of the top 5 business influencers in the world and the No 1 influencer in the UK.

Bernard’s latest book is ‘Business Trends in Practice: The 25+ Trends That Are Redefining Organisations’

View Latest Book

Follow Me

Bernard Marr ist ein weltbekannter Futurist, Influencer und Vordenker in den Bereichen Wirtschaft und Technologie mit einer Leidenschaft für den Einsatz von Technologie zum Wohle der Menschheit. Er ist Bestsellerautor von 20 Büchern, schreibt eine regelmäßige Kolumne für Forbes und berät und coacht viele der weltweit bekanntesten Organisationen. Er hat über 2 Millionen Social-Media-Follower, 1 Million Newsletter-Abonnenten und wurde von LinkedIn als einer der Top-5-Business-Influencer der Welt und von Xing als Top Mind 2021 ausgezeichnet.

Bernards neueste Bücher sind ‘Künstliche Intelligenz im Unternehmen: Innovative Anwendungen in 50 Erfolgreichen Unternehmen’

View Latest Book

Follow Me

What You Need To Know Before You Start Working With Artificial Intelligence

16 May 2022

It seems like everyone is talking about artificial intelligence at the moment, and there’s good reason for that. We are seeing its revolutionary impact across just about every industry:

  • In healthcare, where it’s used to track pandemics and develop vaccines.
  • In banking and finance, where it detects fraudulent transactions and enables more accurate assessments of lending risks.
  • In security, where it prevents cyberattacks and data breaches.
  • In biotechnology, where it augments advances made in fields such as gene editing, promising to help eradicate diseases and put an end to food shortages.
  • In retail, where it predicts what customers are likely to buy, and puts them in front of them at the time they’re ready to pull the trigger.
What You Need To Know Before You Start Working With Artificial Intelligence | Bernard Marr

I firmly believe that the true value of AI – estimated to be worth $13 trillion to the global economy by 2030 – will be realized due to it being accessible to businesses of all shapes and sizes, not just multinational corporations. A vast and eclectic ecosystem of cloud-based, “as-a-service” platforms reduces the need for expensive infrastructure investments and also means that niche solutions exist to help automate solutions in every industry.

But whether you’re simply looking to use AI-augmented marketing tools or to implement machine learning and real-time data analytics from top to bottom of your organization, there are some important points to consider first. The cost of deploying AI may have fallen dramatically in the last decade, but it still requires an investment of time and money, and going into it half-cocked – simply because it seems like everyone else is doing it, and you have a fear of missing out – can be a recipe for an expensive disaster.

Strategy First

The first principle is to start with a strategy. Simply put, this means understanding what you are trying to achieve. AI technologies are tools that are deployed tactically to achieve strategic objectives. Your strategy should be in line with your business objectives – are you aiming for growth? Improving customer retention or lifetime value? Or to reduce overheads involved with design, manufacturing, distribution, or after-sales service? Once you know what you want to achieve, then you can start looking for AI technologies – such as machine learning, computer vision, or natural language processing - that can help you get the job done. I like to start by thinking of the key questions a business needs to answer to be able to hit its targets. Who wants to buy our products or services, or how can we improve the value customers get from dealing with us? Remember, always fit technology to a problem, rather than problems to the technology!

What data do I need?

Once you know what your problems are, start thinking about the information you need to answer questions and get them solved. Data might be internal, such as records of customer transactions and interactions, or external, such as information on demographic trends, behavioral data from social media, or publicly available government data. Data can also be structured – neat, tidy data that fits into spreadsheets such as statistical data or website clickstream data, or unstructured – messy but potentially highly valuable data such as images, videos, speech recordings, or written text. The most advanced AI projects often work with real-time streaming data. This gives us up-to-the minute insights that can be acted on immediately.

What infrastructure do I need?

Building AI infrastructure doesn’t necessarily mean creating algorithms from scratch, big data storage solutions, and a complicated systems architecture process. Cloud providers give companies of any size access to pay-as-you-go storage and AI compute solutions, as well as consulting expertise to get them up and running. Nevertheless, it’s still important to understand the range of services and solutions available in your market. Will a public cloud provider give you everything you need? Particularly if you’re interested in working with very sensitive personal data, you may need to consider on-premises or hybrid infrastructure at some level, which gives you more direct control over your information.

What governance issues will I face?

Working with data brings legal as well as moral and ethical obligations. Legislation is tightening around companies involved with collecting and processing personal information from their customers or the wider public, a good example of this is the European Union GDPR, introduced in 2018. The law (and others like it, such as the California Consumer Privacy Act) oblige businesses that collect personal data to operate within a robust legal framework or face harsh financial penalties. Governance also encompasses the ethical and moral questions that need to be addressed when applying technology in ways that might affect people’s lives. In the information age, trust is essential – if customers don’t trust you with their data, your plans are thwarted before you even start. This means you have to be able to demonstrate that everything you’re doing is governed by a strong code of ethics.

What skills will I need?

There's no getting away from it; we are in the middle of an AI skills crisis. What that means is that industry is coming up with ideas for using AI quicker than colleges and universities can churn out graduates with the skills to bring these ideas to life. People with AI engineering talents are hot property on the jobs market, and their salaries reflect that. But AI doesn’t build itself (quiet) yet, so you're going to need human skills. They can be acquired either by hiring them in (which, as mentioned, can be expensive) or by upskilling existing workforces. Another option is to partner with outside agencies, such as consultants. The approach you choose will depend to a large extent on the scale of your AI ambitions and the resources you have available.

Do you have a data-driven culture?

To some extent, this is all about attitude. What is the attitude, at all levels, towards technology, data, and AI-driven innovation in your organization? In a data-driven business culture, everyone from the boardroom to the shop floor understands the advantages that can be achieved by putting data at the heart of operations and decision-making. This certainly isn’t true of all organizations. Some not-exactly-helpful attitudes that are still prevalent in business include "We aren't ready to be an AI company," "AI is too expensive or complicated," "We know our business better than a machine ever will”, or “Our customers aren’t interested in us becoming an AI company.” There may be good reasons for all of these attitudes, but too often, they are grounded in a fear of the unknown or an unwillingness to move away from a methodology that’s been successful in the past - even when it’s clearly becoming less successful as the world becomes increasingly digitized. The fact is, you can never know enough about your customers. You can never stop looking for ways to drive efficiency across your operations. And you can never stop making your products smarter and more useful. For almost any business, AI is the key to making these things happen.

Of course, this article only scratches the surface of what you need to know before you start working with AI. But all of these topics (and many more) are covered in-depth in the new edition of my book, Data Strategy: How to Profit From A World of Big Data, Analytics And Artificial Intelligence.

Business Trends In Practice | Bernard Marr
Business Trends In Practice | Bernard Marr

Related Articles

6 Roadblocks Stopping Web3 And The Metaverse Becoming A Reality

With the emergence of the metaverse and web3 technologies, it’s clear that the next evolution of the internet is already underway.[...]

The Future Of Factories: 3 Ways To Navigate The Industrial Metaverse

What is the industrial metaverse, you ask? Well, we’re not talking about a separate metaverse exclusively for manufacturers..[...]

The Five Questions Every CEO Must Answer About Sustainability

The future of business is green. As a CEO, the ball is in your court to make sustainability an integral part of your corporate strategy.[...]

Debunking The Top 5 Quantum Computing Myths

It makes sense that most people don’t understand quantum computing.[...]

Mastering Teamwork: Top 10 Strategies for Better Collaboration at Work

The nature of teams may be changing as more and more people work remotely, but the truth is businesses will always want people on their teams who can work well with others.[...]

Personalization Pitfalls: 5 Common Mistakes To Avoid For Effective Marketing

Targeted mass marketing was developed by direct mail businesses in the 1960s and 1970s to enable customers to be segmented by age, geography, or income.[...]

Stay up-to-date

  • Get updates straight to your inbox
  • Join my 1 million newsletter subscribers
  • Never miss any new content

Social Media

Yearly Views


View Podcasts